• facebook
  • whatsapp
  • telegram


      There are several types of genetic disorders. The way in which the disorder is inherited can help determine the risks it will have on a pregnancy and the risk of recurrence it will recur in future children. Risks for having a baby with a birth defect from a genetic abnormality may be increased when:
* The parents have another child with a genetic disorder.
* There is a family history of a genetic disorder.
* One parent has a chromosomal abnormality.
* The fetus has abnormalities seen on ultrasound.

The following are the different types of genetic diseases:
   I. Chromosomal abnormalities
   II. Single gene defects
   III. Multifactorial problems
   IV. Teratogenic problems

I. Chromosomal abnormalities:
      Chromosomal abnormalities in the baby may be inherited from the parent or may occur with no family history. The following chromosomal problems are the most common:
* Aneuploidy: More or fewer chromosomes than the normal number, including:
* Down syndrome (trisomy 21): Cells contain three #21 chromosomes.
* Turner syndrome: One of the two sex chromosomes is not transferred, leaving a single X chromosome, or 45 total.
* Deletion: Part of a chromosome is missing, or part of the DNA code is missing.
* Inversion: When a chromosome breaks and the piece of the chromosome turns upside down and reattaches itself. Inversions may or may not cause birth defects depending on their exact structure.
* Translocation: A rearrangement of a chromosome segment from one location to another, either within the same chromosome or to another.

* Balanced translocation: The DNA is equally exchanged between chromosomes, and none is lost or added. A parent with a balanced translocation is healthy, but he or she may be at risk for passing unbalanced chromosomes in a pregnancy.
* Robertsonian translocation: A balanced translocation in which one chromosome joins the end of another.
* Mosaicism: The presence of two or more chromosome patterns in the cells of a person, resulting in two or more cell lines (for example, some with 46 chromosomes, others with 47).


II. Single gene disorders:
      These are also known as Mendelian inheritance disorders, from the first genetic work of Gregor Mendel. In these disorders, a single gene is responsible for a defect or abnormality. Single gene disorders usually have greater risks of inheritance. Single gene disorders can be:
* Dominant. An abnormality occurs when only one of the genes from one parent is abnormal. If the parent has the disorder, the baby has a 50 percent chance of inheriting it. Examples include the following:
   * Achondroplasia. Imperfect bone development causing dwarfism.
   * Marfan syndrome. A connective tissue disorder causing long limbs and heart defects.

* Recessive. An abnormality only occurs when both parents have abnormal genes. If both parents are carriers, a baby has a 25 percent chance of having the disorder. Examples include the following:
   * Cystic fibrosis. A disorder of the glands causing excess mucus in the lungs and problems with pancreas function and food absorption.
   * Sickle cell disease. A condition causing abnormal red blood cells.
   * Tay-Sachs disease. An inherited autosomal recessive condition that causes a progressive degeneration of the central nervous system, which is fatal (usually by age 5).
* X-linked. The disorder is determined by genes on the X chromosome. Males are mainly affected and have the disorder. Daughters of men with the disorder are carriers of the trait and have a one in two chance of passing it to their children. Sons of women who are carriers each have a one in two chance of having the disorder. Examples include the following:
   * Duchenne muscular dystrophy. A disease of muscle wasting.
   * Hemophilia. A bleeding disorder caused by low levels, or absence of, a blood protein that is essential for clotting.

III. Multifactorial problems:
      Some birth defects do not follow a single gene or chromosomal abnormality pattern. They may be due to several problems, or a combined effect of genes and the environment. It is difficult to predict inheritance of abnormalities caused by multiple factors. Examples include heart defects, cleft lip or cleft palate, and neural tube defects (defects in the spine or brain).


IV. Teratogenic Problems:
      Certain substances are known to cause abnormalities in babies. Many birth defects occur when the fetus is exposed to teratogens (substances that cause abnormalities) during the first trimester of pregnancy when organs are forming. Some known teratogens include the following:
* Certain medications (always consult your doctor before taking any medications during pregnancy)
* Alcohol
* High level of radiation exposure
* Lead
* Certain infections (such as rubella)

Posted Date : 03-02-2021

గమనిక : ప్రతిభ.ఈనాడు.నెట్‌లో కనిపించే వ్యాపార ప్రకటనలు వివిధ దేశాల్లోని వ్యాపారులు, సంస్థల నుంచి వస్తాయి. మరి కొన్ని ప్రకటనలు పాఠకుల అభిరుచి మేరకు కృత్రిమ మేధస్సు సాంకేతికత సాయంతో ప్రదర్శితమవుతుంటాయి. ఆ ప్రకటనల్లోని ఉత్పత్తులను లేదా సేవలను పాఠకులు స్వయంగా విచారించుకొని, జాగ్రత్తగా పరిశీలించి కొనుక్కోవాలి లేదా వినియోగించుకోవాలి. వాటి నాణ్యత లేదా లోపాలతో ఈనాడు యాజమాన్యానికి ఎలాంటి సంబంధం లేదు. ఈ విషయంలో ఉత్తర ప్రత్యుత్తరాలకు, ఈ-మెయిల్స్ కి, ఇంకా ఇతర రూపాల్లో సమాచార మార్పిడికి తావు లేదు. ఫిర్యాదులు స్వీకరించడం కుదరదు. పాఠకులు గమనించి, సహకరించాలని మనవి.


స్ట‌డీ మెటీరియ‌ల్‌

పాత ప్రశ్నప‌త్రాలు


విద్యా ఉద్యోగ సమాచారం


నమూనా ప్రశ్నపత్రాలు


లేటెస్ట్ నోటిఫికేష‌న్స్‌