• facebook
  • twitter
  • whatsapp
  • telegram

Motion in a Straight Line

Questions - Answers
 

1. Derive s = ut +   at2 graphically.

A: A body having initial velocity 'u' moves with uniform acceleration 'a'. Its velocity becomes '' after a time 't'. It makes displacement 's' during that time. A graph plotted between velocity and time for this body is a straight line with Y-intercept 'u' and slope 'a'.

Area between  - t graph and time axis gives the displacement of the body. 

  s = area of the trapezium ABCD =   (Sum of the parallel sides) × Perpendicular distance between them

              =  (u + )t

              =   (u + u + at)t

              = ut +  at2

2. Derive sn = u + a(n -

 ).

A: Initial velocity of a body is 'u'. When it moves with uniform acceleration 'a' its final velocity is  after a time t. To find its displacement in nth second.

          Displacement during nth second = displacement in n seconds - displacement in (n - 1) seconds.

                

3. Show that the time of ascent is equal to time of descent for a body projected vertically upwards.

A: Time of ascent is the time taken by a body to reach its maximum height position where its final velocity is zero. So, substituting   = 0 in   = u - gt, one gets u = gta. Time of ascent ta = u/g. If the maximum height reached is hmax i.e., y = hmax substituting in

                 y = ut -  gt2 hmax = uta -   gta2 = (gta) t-   gta2 =  gta2

                                

    The body on reaching its maximum height position falls freely with initial velocity u = 0. The time taken by it to reach the ground is time of descent (td). From y =   gt2

                             hmax 

  gtd2   =

   Hence time of ascent = time of descent.
 

4. Show that the path of a projectile is a parabola.

A: A body thrown at an angle other than 0° or 90° with the horizontal is an oblique projectile. If the initial velocity of the projectile is u. It is thrown at an angle θ with the horizontal. Its horizontal and vertical components are u cos θ and u sin θ respectively. Initially i.e., at t = 0 the projectile is at the origin. At time t its position coordinates are (x, y). In time t = t, vertical displacement s = y, vertical acceleration a = -g, vertical initial velocity = u sin θ. Substituting in

s = ut +   at2 the vertical displacement y = (u sin θ) t -   gt2

Horizontal displacement s = x,

Horizontal acceleration a = 0,

neglecting air resistance horizontal initial velocity 

             u = u cos θ

Again using s = ut +   at2 the horizontal displacement

             x = ( u cos θ ) t.

Substituting the value of t = x/u cos θ in

          y = (u sin θ ) t -   gt2 

Where A = tan θ and B = g/2u2 cos2 θ

 This is the equation of parabola. Hence the path of the projectile is a parabola.

5. Obtain expressions for time of flight, maximum height and horizontal range of an oblique projectile.

A: Time of flight is the time taken by a projectile to reach the horizontal level of projection. Using the equation of vertical displacement y = (u sin θ)t-   gt2 and substituting y = 0 and t = T

                        We get T = (2 u sin θ)/g.

       Maximum height is the height of place at which the vertical component of velocity becomes zero or it is the vertical displacement during time of ascent.

      Substituting t = ta = (u sin θ)/g and y = Hmax in y = (u sin θ) t -   gt2

The formula for maximum height Hmax = (u2 sin2 θ)/2g.

Horizontal range is the maximum horizontal displacement of a projectile when it reaches the same horizontal level of projection i.e, it is the horizontal displacement during the time of flight. So, t = T = (2u sinθ)/g when x = horizontal range R. Substituting in

                      X = (u cosθ)t

                      R = (u2 sin 2θ)/g

6. Show that the path of a horizontal projectile is a parabola.

A: When an object is thrown horizontally with an initial velocity u from a height h its horizontal displacement s = x in time t, a = 0 along horizontal direction neglecting air resistance. Substituting in

s = ut +  

 at

 x = ut.

Its vertical initial velocity u = 0,

Vertical acceleration a = g

Vertical displacement s = y in time t = t.

Substituting in      

 s = ut +    at2

Which represents a parabola.

7. What is the final velocity of an oblique projectile after time t of projection?

A: The horizontal component of velocity of the projectile is u cosθ which remains constant. But its vertical component changes. Vertical initial velocity uy = u sinθ,   ay = -g.

Substituting in Vy = uy + ayt                   We get Vy = u sin θ - gt

8. What is the angle of projection for maximum horizontal range and state the expression for maximum horizontal range?

A: The angle of projection for maximum horizontal range is θ = 45°. Expression for maximum horizontal range is Rmax = u2/g.

9. What are the two angles of projection for the same horizontal range?

A: θ and (90°- θ) are the two angles of projection for the same horizontal range of a projectile.

Posted Date : 30-08-2021

గమనిక : ప్రతిభ.ఈనాడు.నెట్‌లో కనిపించే వ్యాపార ప్రకటనలు వివిధ దేశాల్లోని వ్యాపారులు, సంస్థల నుంచి వస్తాయి. మరి కొన్ని ప్రకటనలు పాఠకుల అభిరుచి మేరకు కృత్రిమ మేధస్సు సాంకేతికత సాయంతో ప్రదర్శితమవుతుంటాయి. ఆ ప్రకటనల్లోని ఉత్పత్తులను లేదా సేవలను పాఠకులు స్వయంగా విచారించుకొని, జాగ్రత్తగా పరిశీలించి కొనుక్కోవాలి లేదా వినియోగించుకోవాలి. వాటి నాణ్యత లేదా లోపాలతో ఈనాడు యాజమాన్యానికి ఎలాంటి సంబంధం లేదు. ఈ విషయంలో ఉత్తర ప్రత్యుత్తరాలకు, ఈ-మెయిల్స్ కి, ఇంకా ఇతర రూపాల్లో సమాచార మార్పిడికి తావు లేదు. ఫిర్యాదులు స్వీకరించడం కుదరదు. పాఠకులు గమనించి, సహకరించాలని మనవి.

Special Stories

More

విద్యా ఉద్యోగ సమాచారం

More
 

లేటెస్ట్ నోటిఫికేష‌న్స్‌