• facebook
  • twitter
  • whatsapp
  • telegram

System of Circles

1. Find the radical centre of the circles  x2 + y2 - 4x - 6y + 5 = 0, x2 + y2 - 2x- 4y- 1 = 0;  x2 + y2 - 6x- 2y = 0.

Sol: Given Circles:  (S) :  x2 + y2 - 4x - 6y + 5 = 0
                                        (S') :  x2 + y2 -2x-4y-1 = 0
                                       (S'') : x2 + y2- 6x- 2y = 0
                                        S - S'  =  0   -2x -2y + 6 = 0
                                        ⇒ x + y -3 = 0 ................. (1)
                                        S'- S'' = 0   ⇒  4x -2y-1 = 0 ................. (2)
                     Solving (1) and (2) we get the radical centre.

           
                                                                     

2. If the circles  x2 + y2 + 2ax + c = 0 and x2 + y2 + 2bx + c = 0 touch each other then show  that   .

Sol: Given first Circle :  x2 + y2 + 2ax + c = 0 

                         Centre :  C1(-a, 0)

                                                                                                     
3. Find the equation of the circle Coaxial with the circles  x2 + y2 - 2x + 2y + 1 = 0  and    x2 +  y2 + 8x - 6y = 0 which passes through the point (-1, -2) .

Sol:   Given circles : (S):   x2 + y2 -2x + 2y + 1 = 0

                                       (S'):   x2 +y2 + 8x- 6y = 0
    Radical axis (L) :   

 ⇒  -10x + 8y + 1 = 0
⇒  10x  - 8y  - 1 = 0
Any circle of coaxial system of circle : S + λL = 0
⇒  x2 + y- 2x + 2y + 1 + λ (10x - 8y - 1) = 0
⇒  x2 + y2 + (10λ - 2) x + (2– 8λ) y+ (1 - λ) = 0
Since this circle passes through (-1, -2)                                                                                                                       
⇒ 1 + 4 -1 (10λ - 2) -2 (2 - 8λ) + (1 - λ) = 0
⇒ 5 - 10λ + 2 - 4 + 16λ + 1 - λ = 0
⇒  5λ + 4 = 0  

                             
Required circle : x2 + y2 - 2x + 2y + 1 - 4/5
 ( 10x - 8y -1) = 0
⇒  5(x2 + y2) - 10x +10y +5 - 40x + 32y + 4 = 0
⇒  5(x2 + y2) - 50x + 42y + 9 = 0

4.  Find the equation of the circle which is coaxial with the circles  x2 + y2 -6x + 4 = 0 and x2 + y2 -5x + 4 = 0  and touches the line 3x - 4y = 15 .

Sol:  Given circles:
         (S) :  x2 + y2 -6x + 4 = 0

        (S') :  x2 + y2 -5x + 4 = 0  
Radical axis (L) :  

                        ⇒   -x = 0
                         ⇒    x = 0
 Any circle of coaxial system of circle : S + λL = 0
     ⇒   x2 + y2 -6x + 4 + λ (x) = 0
     ⇒    x2 + y2 + x (λ-6) + 4 = 0
                              
                     Squaring on both sides
                               ⇒  9λ2 + 144 + 72λ  =  25λ2 - 300λ + 500
                               ⇒  16λ2 -372λ + 356 = 0
                               ⇒  4λ2 - 93λ + 89 = 0
                               ⇒  4λ2 - 4λ - 89λ + 89 = 0
                               ⇒  4λ(λ -1) - 89 (λ -1) = 0

                              ⇒   (λ -1) (4λ - 89) = 0
                                    λ = 89/4        
                                  ∴   λ = 1;            
    Required circles:   λ = 1 ⇒   x2 + y2 -6x + 4 + 1 (x) = 0
                                      ⇒  x2 + y2 -5x + 4 = 0
                    λ = 89/4  ⇒  x2 + y2 -6x + 4 +  (x) = 0
                                   ⇒  4( x2 + y2) - 24x + 16 + 89x = 0
                                   ⇒   4( x2 + y2) + 65x + 16 = 0

5.  Find the angle between the circles  x2 + y2 + 4x -14y + 28 = 0 and  x2 + y2 + 4x - 5 = 0.

Sol:    Given first circle : (S) : x2 + y2 + 4x -14y + 28 = 0 ;  Centre : C1 (-2, 7)
                                    
             
         ∴  θ  =  60°

6.  Find the equation to the circle whose diameter is the common chord of the two circles  x2 + y2 - 4x + 6y -12 = 0  and  x2 + y2 + 2x - 2y - 23 = 0. Hence find the length of the common chord.

Sol:      Given Circles : (S)  :  x2 + y2 - 4x + 6y-12 = 0 ; (S' )  :  x2 + y2 + 2x- 2y- 23 = 0
            Common chord (L) : 

 ⇒    -6x + 8y + 11 =  0
 ⇒    6x -  8y -  11 =  0

 Any circle of coaxial system of circle :  S + λL = 0
⇒   x2 + y2 - 4x + 6y-12 + λ (6x - 8y- 11) = 0
⇒   x2 + y2 + x(6λ - 4) + y (6 - 8λ) + (-12 - 11λ) = 0
               Centre  :  (2 - 3λ , 4λ - 3)
              By data :  6(2 - 3λ) -8 (4λ-3) -11 = 0
                     ⇒    12 -18λ - 32λ + 24 - 11 = 0
                     ⇒    -50λ + 25 = 0
                                

     Required Circle : x2 + y2 - 4x + 6y - 12 + 1/2 (6x - 8y - 11) = 0
                                ⇒   2(x2 + y2) - 8x + 12y - 24 + 6x - 8y - 11 = 0
                               ⇒   x2 + y2 - x + 2y - 35/2
  =  0
                              2g = -1 ;  2f = 2 ;   C = - 35/2

                                    g = - 1/2 ;      f  =  1
                                                                                            
               

7.  Find the equation of the circle which is orthogonal to the circles x2 + y2 + 2x +17y + 4 = 0,   x2 + y2 + 7x + 6y + 11 = 0 and x2 + y2 - x + 22y + 3 = 0.

Sol:  Let the required circle be :   x2 + y2 + 2gx + 2fy + c = 0 .

Given Circle : x2 + y2 + 2x + 17y + 4 = 0
                               g' = 1;     f'' = 17/2
  ;     c' =  4
           Orthogonal Condition : 

                           ⇒  2g(1) + 2f (17/2  )  =  c + 4
                           ⇒   2g + 17 f - c =  4 ................ (1)
          Given Circle :  x2 + y2 + 7x + 6y + 11 = 0
                            g' =7/2
 ;       f ' = 3 ;       c' = 11
    Orthogonal condition : 2g ( 7/2
 ) + 2f(3) = c + 11
                                          7g + 6f - c = 11 ................ (2)
            Given Circle : x2 + y2 - x + 22y + 3 = 0
                        g' = -1/2
  ;    f'' = 11;       c' = 3
       Orthogonal condition : 2g (-7/2
) + 2f (11) = c + 3
                                        ⇒  -g + 22f - c = 3 ................ (3)

from (1)   =  2(-3) + 17(-2) - c = 4
                             ⇒   - 40 - c = 4
                              ⇒  c = - 44
       Required circle :   x2 + y2 + 2(-3) x + 2(-2) y - 44 = 0
                             ⇒   x2 + y2 - 6x - 4y - 44 = 0

8.  Find the equation of the circle which passes through the point (0, -3) and intersects the circles given by the equations  x2 + y2 - 6x + 3y + 5 = 0 and x2 + y2 - x- 7y = 0 orthogonally.

Sol:              Let the required circle be:  x2 + y2 + 2gx + 2fy + c = 0 
                  Since this circle passes through (0, -3) 
                            ⇒  0 + 9 + 2g(0) + 2f(-3) + c = 0
                           ⇒   -6f + c = -9 .................. (1) 
     Given Circle :  x2 + y2 - 6x + 3y + 5 = 0
                             g' = -3 ;       f'' = 3/2 ;     c' = 5
    Orthogonal Condition : 

                            2g(-3) + 2f (3/2 )  =  c + 5
                          -6g + 3 f - c = 5 .................. (2)
 Given circle : x2 + y2 - x - 7 y = 0
                        g' = - 1/2
;     f ' = -7/2 ;     c' = 0
 Orthogonal condition : 2g (-1/2
 ) + 2f (- 7/2 ) = c + 0
                             ⇒   -g -7 f- c = 0
                          ⇒  g + 7 f + c = 0 .................. (3)
             Solving (1) and (2)


                   

9.  Find the equation of the circle which pass through the origin, having its centre on the line  x + y = 4 and intersecting the circle x2 + y2 - 4x + 2y + 4 = 0 orthogonally.

Sol :  Let the required Circle be :   x2 + y2 + 2gx + 2fy + c = 0
                        Since this Circle passes through (0, 0)
                                   
    
               Centre (-g, -f) lies on the line : x + y = 4
                                  ⇒     -g - f = 4
                                  ⇒      g + f = - 4 .................. (1)
                                     Given Circle : x2 + y2 - 4x + 2y + 4 = 0
                                     g' = -2 ;        f'' = 1 ;        c' = 4
                  Orthogonal Condition :    

                                     2g(-2) +  2f(1)  =  0 + 4                      
                                          ⇒     - 4g + 2f = 4
                                         ⇒       2g  -   f = -2 .................. (2)
                   Solving (1) and (2) 
                                             g +  f =  - 4
                                           2g  -  f =  - 2
                                        ---------------------

                                    ⇒      3g         =  - 6
                           

                                
                                     
                       from (1) :  -2 + f  =  -4
          Required circle :  x2 + y2 + 2(-2) x + 2(-2) y + 0 = 0
                              ⇒     x2 + y2 - 4x - 4y = 0

10. Find the limiting points of the coaxial system, determined by the circles  x2 + y2 + 10x - 4y - 1 = 0 and x2 + y2 + 5x + y + 4 = 0.

Sol:            Given circle (S)  :  x2 + y2 + 10x - 4y - 1 = 0
                                      (S')  :  x2 + y2 + 5x + y + 4 = 0
                  Radical axis (L)  :  S - S' = 0  
                                      ⇒  5x - 5y - 5 = 0        
                                     ⇒   x - y - 1 = 0
                     Any circle of coaxial system of circle  : S + λ L = 0
                           x2 + y2 + 10x - 4y- 1+ λ (x - y - 1) = 0
                         x2 + y2 + (λ + 10) x + (- 4 - λ) y + (-1 - λ) = 0
            

        
        
 ⇒  λ+ 100 + 20λ + λ2 + 16 + 8λ + 4 + 4λ = 0
 ⇒  2λ2 + 32λ + 120 = 0
 ⇒  λ2 + 16λ + 60 = 0
⇒   λ2 + 6λ + 10λ + 60 = 0
 ⇒  λ(λ + 6) + 10 (λ + 6) = 0   (λ + 6) (λ + 10)  =  0
 ⇒   λ  =  -6;      λ  =  -10
 Substituting the values of λ in centre, we get
 Limiting points :   λ  =   -6    ⇒    (-2, -1)
                               λ  =  -10   ⇒   (0, -3)     

11.  The point (2, 1) is a limiting point of a coaxial system of circle of which x2 +  y2 - 6x - 4y - 3 = 0  is a member.  Find the radical axis and the other limiting point.

Sol:  Given limiting point :  (2, 1)
        Then circle (S) : (x - 2)2 + (y - 1)2 = 0
       
  x2 + y2 - 4x - 2y + 5 = 0
        Given Circle (S') : x2 + y2 - 6x - 4y - 3 = 0
        Radical axis  (L) ; S - S' = 0 
       
⇒  2x + 2y + 8 = 0
       
⇒  x + y + 4 = 0
Let Other limiting point be: (h, k) ;  Then


                     

⇒  h - 2 =  k - 1 = -7
  h - 2 =  -7 ;  k -1 = -7
⇒  h =  -5 ;  k  =  -6 
...  Other limiting point =  (-5, -6)

12.  The origin is a limiting point of a coaxial system of which  x2 +  y2 + 2gx + 2fy + c =0 is  a member prove that other limiting point is 

 .

Sol: Given Limiting Point: (0, 0) ;  Then circle  (S) : (x - 0)2 + (y - 0)2 = 0
⇒ x+ y2 = 0  
Given circle (S') : x2 + y2 + 2gx  +  2fy + c = 0
Radical axis (L)  : S - S' = 0

⇒ - 2gx - 2fy- c = 0
⇒ 2gx + 2fy + c = 0
Any circle of coaxial system of circle :  S + λL = 0

⇒ x2 + y2 + λ(2gx + 2fy+ c) = 0

 x2 + y2 + 2gλx + 2fλy +  cλ = 0 
Centre :  (- gλ, - fλ)                                         
Radius  :   
By data :     Radius = 0 

⇒ g2λ2 +  f2λ2 - cλ = 0
⇒ λ2 (g2 + f2) - cλ = 0
⇒ λ [ λ (g2 + f2) - c] = 0
λ =  0;     λ (g2 + f2) - c = 0

13. Find the equation of the circle which passes through the origin and which belongs to the coaxial system of which the liming points are (1, 2) and (4, 3).

Sol:  Given Limiting Points : (1, 2) and (4, 3)
From (1, 2) : Circle (S) : (x - 1)2 + (y - 2)2  =  0

⇒ x2 +  y2 - 2x - 4y + 5 = 0 .................. (1) 
From (4, 3) : (S' ) (x - 4)2 + (y - 3)2 = 0 

⇒ x2 +  y2 - 8x - 6y + 25 = 0 .................. ( 2)
Radical Axis (L) : S - S' = 0

⇒ 6x + 2y - 20 = 0
⇒ 3x +   y - 10  = 0  
 Any circle of coaxial system of circle : S + λL = 0

⇒ x2 + y2 - 2x - 4y + 5 + λ ( 3x + y - 10) = 0 
Since it passes through (0, 0 )

⇒ 5 - 10λ = 0


                                                
Required Circle : x2 + y2 - 2x - 4y + 5 +  (3x + y - 10) = 0

⇒ 2 (x2 + y2) - 4x - 8y + 10 + 3x + y - 10 = 0
⇒ 2 (x2 + y2) - x - 7y = 0

14. (Find the equation of the circle which belongs to the coaxial system determined by the limiting points (0, - 3) and (- 2, - 1) and which is orthogonal to the circle  x2 + y2 + 2x + 6y + 1 = 0.
Sol:  Given Limiting Points : (0, -3) and (-2, -1)
From (0, - 3) : Circle : (S) : (x - 0)2 + (y + 3)2 = 0

⇒ x+ y2 + 6y + 9 = 0  ..................  (1) 
From (- 2, - 1) , Circle : (S' ) : (x + 2)2 + (y + 1)2 = 0

⇒ x2 + y2 + 4x + 2y + 5 = 0 .................. ( 2)
Radical Axis (L) : S- S' = 0

⇒ - 4x + 4y + 4 = 0
            x - y - 1 = 0
Coaxial System of Circle : S + λL = 0

⇒ x2 + y2 + 6y + 9 + λ (x - y- 1) = 0
⇒ x2 + y2 + λx + (6 - λ) y + (9 - λ) = 0 .................. (3)


                                            
Given Circle :  x2 + y2 + 2x + 6y + 1 = 0 .................. (4)

g' =  1;                f'' =  3;              c' =  1 
Orthogonal Condition for (3) and (4) : 


                                     
⇒ λ + 18 - 3λ = 10 - λ
⇒ 18 - 2λ = 10 - λ


                                                 
Required Circle : x2 + y2 + 6y + 9 + 8 (x - y - 1) = 0

⇒  x2 + y2 + 6y + 9 + 8x - 8y - 8 = 0
⇒  x2 + y2 + 8x - 2y + 1 = 0 
 

15.  Find the equation to the system of circle orthogonal to the coaxial system x2 + y2 + 3x + 4y - 2 + λ (x + y - 7) = 0. 
Sol: Equation to given coaxial System is
x2 + y2 + 3x + 4y - 2 + λ (x + y - 7) = 0

⇒ x2 + y2 + x (3 + λ) + y(4 + λ) + (- 2 - 7λ) = 0 .................. (1)
Let the Equation to the Circle Orthogonal to the given Coaxial
System be :   x2 + y2 + 2gx + 2fy + c = 0 .................. ( 2 )

By data: (1) and (2) are Orthogonal 
⇒  g (3 + λ) + f (4 + λ) = c - 2 - 7λ
⇒ λ (g + f + 7) + 3g + 4f - c + 2 = 0
  λ 
⇒  g  +  f  +  7  =  0 .................. ( 3 )
3g  +  4f  +  2  -  c  =  0 .................. ( 4 )
solving (3) and (4)   


                                 
g = - 26 - c; f = 19 + c
Equation (2) becomes  
x2 +  y+ 2 (- 26 - c) x + 2(19 + c) y + c = 0

⇒ x2 + y2 - 52x + 38y - c (2x - 2y - 1) = 0
Which is the required orthogonal system, when 'C' is a parameter.

 

16.   Prove that the limiting points are inverse points with respect to every circle of coaxial system.
Sol: Let the equation of a circle of a coaxial system be :  x2 + y2 + 2λx + c = 0.

Centre : C ( - λ , 0)
Radius : 


By data :      Radius = 0 
⇒ λ- c = 0
⇒ λ2  =  c


                           
L (-  , 0) and L' ( , 0) are Limiting points
CL = - λ + 
CL' = - λ - 
CL . CL' = (- λ +  ) (- λ - )
CL . CL' = λ2 - c
CL . CL' = r2 
also C, L, L' are Collinear and L, L' lie on the same circle of C
Hence, L and L' are Inverse points w.r.t. every Circle of the system. 


17.  Prove that the equation of the circle which cuts orthogonally each member of a given coaxial system x2 + y2 + 2 λx + c = 0  is  x2 + y2 + 2fy - c = 0. 
Sol: The given coaxial system is given by the equation :

 x2 + y2 + 2λx + c = 0  ..................  (1) 
Consider tow circle of this System for values  λ1 and  λ2 of λ.
x2 + y2 + 2λ1x + c = 0 .................. (2)
x2 + y2 + 2λ2x + c = 0 .................. (3)
x2 + y2 + 2gx + 2fy + k = 0   
Let the Circle Orthogonal to (2) and (3) be   ... 2 λ1g = c + k ; 2λ2g = c+k

⇒ 2 (λ1 - λ2) g = 0
⇒ g = 0 [...   λ1  ≠  λ2]
 ...   k = - c 
Hence the equation of the circle which cuts every member of the given coaxial system orthogonally is  x2 + y2 + 2fy - c = 0 .

 

18. Show that the equation x2 + y2 + 2 (1 - λ) x + 2 (1 - 2λ) y - 2 = 0 where λ is a parameter, represents a system of Coaxial Circles. Also find the equation of the circle which cuts orthogonally the circle x2 + y2 + 4x - 6y + 8 = 0.
Sol: Given equation :  x2 + y2 + 2 (1 - λ) x + 2 (1 - 2λ) y - 2 = 0 

⇒ x2 + y2 + 2x + 2y - 2 - λ(2x + 4y)  = 0

This clearly represents a circle
Let λ1 and λ2 be two values of the parameter λ, then the two circles corresponding to two values of λ are  x2 + y2 + 2x + 2y - 2 - λ1 ( 2x + 4y ) = 0 .................. (2)
and  x2 + y2 + 2x + 2y - 2 - λ2 ( 2x + 4y) = 0 .................. (3)
Radical axis of (2) and (3) : ( λ1 - λ2 ) ( 2x + 4y ) = 0
2x + 4y = 0      [... λ1  ≠  λ2]
That is every pair of circle S + λL = 0 has the same radical axis 2x + 4y = 0
Equation (1) represents a coaxial system of circles
Given another circle :  x2 + y2 + 4x - 6y + 8 = 0 .................. (4)
(1) and (4) cut each other orthogonally. 

⇒ 2 (1 - λ) (2) + 2 (1 - 2 λ) ( - 3)  = - 2 + 8
⇒ 2 - 2 λ - 6 + 12 λ = 6
⇒ 10 λ - 4 = 6
⇒ 10 λ = 10
⇒ λ = 1 
The equation of the circle cutting (4) orthogonally and belonging to (1) is
x2 + y2 + 2x + 2y - 2 - ( 2x + 4y ) = 0

⇒ x2 + y2 - 2y- 2 = 0  
 

19.  (- 2, - 1) is a limiting point of a coaxial system of which x2 + y2 + 2x + 4y + 7 = 0  is a member find the equation of the orthogonal system.
Sol:   Given Limiting point :   (- 2, - 1)
From (- 2, - 1) : Circle (S) :  (x + 2)2 + (y + 1)2 = 0

⇒ x2 + y2 + 4x + 2y + 5 = 0 .................. (1)
Given circle  (S' ) : x2 + y2 + 2x + 4y + 7 = 0 .................. (2)
Radical axis of (1) and (2) : (L) : 2x - 2y - 2 = 0

⇒ x - y - 1 = 0
Coaxial System of Circle  :  S + λL = 0
x2 + y2 + 4x + 2y + 5 + λ ( x - y - 1 ) = 0

⇒ x2 + y2 + ( 4 + λ ) x + ( 2 - λ ) y + ( 5 - λ ) = 0


                         

⇒ 16 + λ2 + 8 λ + λ2 + 4 - 4 λ - 20 + 4 λ = 0
⇒ 2 + 8λ = 0
⇒ λ2 + 4λ = 0
⇒  λ  [λ + 4] = 0
⇒ λ =  0;      λ =  - 4
Limiting points :  λ = 0  
⇒  (- 2, - 1)
                           λ =  - 4  
⇒  (0, - 3) 
Now any circle through the limiting points be  x2 + y2 + 2gx + 2fy + c = 0 
Where  4 +1 - 4g - 2f + c = 0  and   0 + 9 + 0 - 6f + c = 0

⇒  - 4g - 2f + c + 5 = 0  and - 6f + c + 9 = 0
Solving  - 4g - 2f + c + 5 = 0
              - 6f + c +  9 = 0

Posted Date : 15-06-2021

గమనిక : ప్రతిభ.ఈనాడు.నెట్‌లో కనిపించే వ్యాపార ప్రకటనలు వివిధ దేశాల్లోని వ్యాపారులు, సంస్థల నుంచి వస్తాయి. మరి కొన్ని ప్రకటనలు పాఠకుల అభిరుచి మేరకు కృత్రిమ మేధస్సు సాంకేతికత సాయంతో ప్రదర్శితమవుతుంటాయి. ఆ ప్రకటనల్లోని ఉత్పత్తులను లేదా సేవలను పాఠకులు స్వయంగా విచారించుకొని, జాగ్రత్తగా పరిశీలించి కొనుక్కోవాలి లేదా వినియోగించుకోవాలి. వాటి నాణ్యత లేదా లోపాలతో ఈనాడు యాజమాన్యానికి ఎలాంటి సంబంధం లేదు. ఈ విషయంలో ఉత్తర ప్రత్యుత్తరాలకు, ఈ-మెయిల్స్ కి, ఇంకా ఇతర రూపాల్లో సమాచార మార్పిడికి తావు లేదు. ఫిర్యాదులు స్వీకరించడం కుదరదు. పాఠకులు గమనించి, సహకరించాలని మనవి.

Special Stories

More

విద్యా ఉద్యోగ సమాచారం

More
 

లేటెస్ట్ నోటిఫికేష‌న్స్‌