• facebook
  • twitter
  • whatsapp
  • telegram

Parabola

1. Find the equation of the parabola whose axis is parallel to X - axis and which passes through (1, 2), (4, -1) and (2, 3).

Sol: Given points: (1, 2), (4, -1), (2, 3)
Parabola: x  =  l y2 + my + n (Axis 
  X- axis)

At (1, 2): 1  =  4 l + 2m + n ........... (1)

At (4, -1): 4  =  l - m + n ........... (2)

At (2, 3): 2  =  9 l + 3m + n ........... (3)

      
 
 
 ⇒  2x = y2  -  3y  +  4
 ⇒  y2  -  2x  - 3y  +  4  =  0

2. Find the equation of the parabola whose axis is parallel to Y- axis and which passes through the points (4, 5), (-2, 11) and (-4, 21)

Sol: Given Points: (4, 5), (-2, 11), (-4, 21)
Parabola: y = lx2 + mx + n (Axis  Y -  axis)

At (4, 5): 5 = 16 l + 4m + n ........... (1)

At (-2, 11): 11 = 4 l - 2m + n ........... (2)

At (-4, 21): 21 = 16 l - 4m + n ........... (3)

Solving (1) and (2)


⇒  2y  =  x2 -  4x  +  10
⇒   x2 -  4x  -  2y  +  10  =  0

3. Find the equation of the parabola whose focus is (4, 5) and vertex at (3, 6). Also find the length of the Latus rectum.                    

                  

Given Focus : S(4,  5)
Vertex: A(3, 6)
A point on directrix: Z (2, 7)


slope of directrix: 1
Directrix: y - 7 = 1 (x - 2)

⇒  x  -  y  +  5  =  0
Let P(x, y) be any point on the Parabola
From the definition of Parabola: PS  =  PM

4.  Find the vertex, focus, directrix, axis, tangent at the vertex and length of latus rectum of the parabola 4x2  +  12x - 20y  +  67  =  0.
Sol: Given Parabola: 4x2 +  12x  - 20y  +  67  =  0



5.  Find the vertex, focus, directrix, axis, tangent at the vertex and length of latus rectum of the parabola y2 -  x  +  4y  +  5  =  0
Sol: Given Parabola: y2 -  x  +  4y  +  5  =  0

⇒   y2  +  4y  =  x  - 5
⇒   y2  +  2 (y) (2)  +  4  =  x  - 5  +  4
⇒   (y + 2)2  =  x  - 1
⇒   [y-(-2)]2  =  x - 1
Comparing with (y - β)2  =  4a (x - α)
β  =  -2;        4a  =  1 ;    α  =  1
              ⇒     a  =  1/4
 
Vertex: A (α, β) = A (1, -2)
Focus: S(a  +  α, β) = S ( 1/4
+ 1, -2)
= S (5/4
, - 2)
Directrix: x  +  a  - α  =  0

⇒  x  +  1/4 -  1  =  0
⇒  x  -  3/4  =  0
⇒  4x  - 3  =  0
Axis: y - β  =  0

⇒  y  +  2  =  0
Tangent at the vertex: x - α  =  0

⇒  x - 1  =  0
Length of latus rectum  =  4a
 =  1 unit.

6. Show that the condition that the line y = mx + c may be a tangent to the parabola
y2 = 4ax is c = a/m
Sol: Given Parabola: y2  =  4ax
Tangent at (x1, y1): yy1 = 2a (x + x1)

⇒  yy1 -  2ax  -  2ax1  =  0 ........... (1)
Given tangent: y  =  mx  + c
y - mx - c = 0 ........... (2)

7. Show that the equation of the common tangent to the circle x2 + y2 = 2a2 and the parabola
y2 = 8ax  is  y  =   (x + 2a)
Sol: Parabola; y2 = 8ax

Centre: (0 , 0)
    

⇒  m4  +  m2  -  2  =  0
⇒ m4  +  2m2  -  m2 -  2  =  0
⇒  m2 ( m2  +  2) - 1 (m2  +  2)  =  0
⇒  (m2  - 1) (m2  +  2)  =  0
⇒  m2 - 1  =  0;  m2  +  2  =  0
⇒  m2  =  1 ;    m2  =  -2

8.  From an external point P tangents are drawn to the parabola y2 = 4ax and these tangents make angels θ1, θ2 with it axis, such that cot θ1 + cot θ2 is a constant 'a'. Then show that 'P' lies on a horizontal line.
Sol: Parabola: y2 = 4ax
Tangent: 

⇒   m2x  −  my  +  a  =  0
This tangent passes through P (x1, y1)

⇒  m2x1 - my1  +  a  =  0
 


 

9. If  lx  +  my  +  n  =  0 is a normal to the parabola y2  =  4ax, then show that the
condition is al 3  +  2alm2 + nm2  =  0
Sol: Parabola: y2  =  4ax
Normal at 't' : y + xt  =  2at  +  at3 ........ (1)
Given normal: lx  +  my  +  n  =  0

⇒   lx  +  my  =  -n ........ (2)
Comparing (1) and (2)

⇒   2alm2 + al 3  =  - nm2
⇒  al 3  +  2alm2  +  nm2  =  0

10. The normal at 't1' on the parabola y2 = 4ax meets the curve again at 't2' then show that 
Sol: Given parabola: y2  =  4ax

Normal:  y - 2at1 = - t1 (x - at12)
 ⇒  y - 2at1 = -xt1 + at13
  ⇒ y + xt1 = 2at1 + at13
This equation again passing through (at22, 2at2)
 ⇒  2at2 + at22t1 = 2at1 + at13
 ⇒ 2at2 - 2at1  =  at13 - at22 t1

⇒  2a (t2 - t1)  =  at1 (t12  -  t22)
⇒  -2(t1 - t2)  =  t1(t1 - t2) (t1 + t2)

11. Show that the Locus of poles of chords of the parabola y2 = 4ax which subtend a right angle at the vertex is x  +  4a  =  0
Sol: Given parabola: y2  =  4ax
Polar of (x1, y1), yy1  = 2 a (x + x1)
⇒ yy1  -  2ax  =  2ax1


    
Pair of straight line: y2x1 - 2xyy1  +  4ax2  =  0
Coefficient of x2 :  4a
Co-efficient of y2 :  x1
Angle: 90°
⇒  Coefficient of x2   +  coefficient of y2  =  0

⇒ 4a  +  x1  =   0
Locus : x  +  4a  =  0

 

12. The Polar of P w.r.t the parabola y2 = 4ax touches the circle x2 + y2 = 4a2. Find the locus of P.
Sol: Given Parabola: y2 = 4ax
Polar of (x1, y1): yy1 = 2a (x + x1)
⇒ yy1 - 2ax - 2ax1  =  0
Given Circle: x2  +  y2 = 4a2
Centre: (0, 0)
Radius: 2a


 
⇒ x12  =  y12  +  4a2
⇒ x12 -  y12  =  4a2
Locus of P (x1, y1): x2 - y2  =  4a2

13. Show that the locus of the chord of the parabola y2 = 4ax which subtend a constant angle α , at the vertex is (x + 4a)2 = 4 cot2 α (y2 -  4ax)
Sol: Let Pole: (x1, y1)
Parabola: y2 = 4ax
Polar of (x1, y1): yy1  =  2a (x + x1)
⇒ yy1 -  2ax  =  2ax1


 

 Homogeneous equation: y2 - 4ax (1) = 0

 ⇒ y2x1 -  2xyy1  +  4ax2  =  0

⇒ 4ax2 - 2y1xy  +  x1y2  =  0
⇒ a  =  4a ;    2h  =  -2y ;    b   =   x1   
                 h  =  -y1

⇒ tan2 α (4a + x1)2 = 4 (y12 - 4ax1)
Locus of (x1, y1): tan2 α (4a + x)2 = 4(y2  - 4ax)
⇒ (x + 4a)2  =  4 cot2 α (y2 - 4ax)

 

14. The Coordinates of the ends of a focal chord of the parabola y2 = 4ax are (x1,y1) and (x2, y2). Prove that x1x2 = a2,  y1y2  = - 4a2
Sol: Equation of the chord joining the points (at12, 2at1) and (at22, 2at2) is


  

 ⇒ y(t2 + t1) - 2at1(t2 + t1)  =  2x  -  2at12
⇒   y(t2 + t1) - 2at1t2 - 2at12  =  2x - 2at12
⇒   2x  -  y(t2 + t1)  +  2at1t2  =  0
This Chord passes through S(a, 0)
⇒ 2a + 2at1t2  =  0
⇒ 1 + t1 t2  =  0

Given: P(x1, y1) and Q(x2, y2) are the ends of the focal chord
⇒ x1x2   =  a2 t12 t22
⇒   x1x2  =  a2 (t1t2)2
⇒   x1 x2 = a2 (-1)2

⇒ y1y2  =  4a2 t1 t2
⇒     y1 y2 = 4a2 (-1)

15. Tangents are drawn to the parabola y2  =  4ax at points whose abscissae are in the ratio k : 1. Prove that they intersect on the curve 
Sol: Given Parabola: y2 = 4ax
Let Points: (at12, 2at1 ), (at22, 2at2)
By data: at12 : at22  =  k  :  1

    t1 = t2  
Point of intersection of tangents at t1, t2 :  [at1t2, a(t1 + t2)]
Let Point of intersection of the tangents: (x1, y1)
x1    =    at1t2   ;                    y1    =    a (t1 + t2)
⇒    x1  =  at22      y1  =  a (t2

  +  t2)


Locus of (x1, y1) :  
 

16. Show that the length of the chord of the contact of the (x1, y1) w.r.t. the Parabola y2 = 4ax is    and also show that the area of the triangle formed by the tangents from (x1, y1) and the chord of contact   

Sol: Given Parabola: y2  =  4ax
Given Point: P (x1, y1)
Let Contact Points: Q (at12, 2at1)
and R (at22, 2at2)
Point of Intersection of
tangents at Q and R : (at1t2, a (t1 + t2))
By data: x1 =   a t1t2 ;   y1  =  a (t1  +  t2)


    
Length of the Chord of Contact:




17. Prove that the locus of the point of interaction of two perpendicular normals to the parabola y2 = 4ax is the parabola y2 = a (x  - 3a)
Sol: Parabola; y2 = 4ax
Given point: P (x1, y1)
Normal at 't': y  +  xt  =  2at  +  at3
If it passes through P (x1, y1)
⇒    y1 + x1t  =  2at + at3
⇒    at3 + 2at - x1t - y1 = 0
⇒    at3 + (2a - x1)t  -  y1 =  0    

Let roots; t1, t2, t3    
  t1t2t3  =    .......... (1)
Slope of the normal at 't1': - t1
Slope of the normal at 't2': - t2
Given: PA  PB
    (Slope of PA) (Slope of PB)  =  -1
    (-t1) (-t2) = -1
                 t1t2  =  -1 ............(2)
From (1) and (2) : (-1) t3
   t3
Since the normal at t3 also passes through P(x1, y1)
⇒     y1 +  x1t3 =   2at3  +  at33



 ⇒  a2 -  ax1  =  - 2a2 -  y12
⇒    y12  -  ax1 + 3a2  =  0
⇒    y12 -  a (x1 -  3a)  =  0
⇒  y12 -  a (x1 -  3a)
Locus of P (x1, y1):     y2 = a (x  - 3a)

 

18. Find the equations of tangent and normal to the parabola y2  =  8x at (2, 4).
Sol: Given Parabola: y2 = 8x
   4a  =  8



19. Write down the equation of the tangent to the parabola y2 = 16x inclined at 60° to X -axis.
Sol : Given parabola: y2 = 16x
 ⇒ 4a = 16

Slope of the tangent : m  =  tan60°


20. Show that the line 2x  -  y  +  2  =  0 is tangent to the parabola y2 = 16x. Find the point of contact also.
Sol: Given Parabola: y2 = 16x
⇒ 4a = 16


 
Given line: 2x  -  y  +  2  =  0
⇒ y  =  2x  +  2
⇒ m  =  2; c  =  2


Condition    is satisfied with the 2x - y + 2 = 0 and the parabola
y2  = 16x.
  The given line is a tangent to the given parabola.

21. Find the equation of the tangent of the parabola y2 = 8x which is parallel to the line x - y + 3 = 0
Sol: Given parabola: y2 = 8x
⇒ 4a  =  8
⇒ a  =  2                Given line: x  -  y  +  3  =  0
⇒ y  =  x  +  3
⇒ m  =  1
Equation to the tangent parallel to x  -  y  +  3  =  0


22. Find the equation of the normal to the parabola y2 = 16x which is perpendicular to the line 2x - y + 5 = 0.
Sol. Given parabola: y2 = 16x
⇒   4a = 16
⇒ a = 4
Given line: 2x - y + 5 = 0
⇒ y   =  2x + 5
⇒ m  =  2
Equation to the normal
Perpendicular to 2x - y + 5 = 0


⇒ x  +  2y  +  16  =  0
 

23. Find the equation of the normal to the parabola y2 = 4x and whose slope is 2
Sol: Given Parabola: y2  =  4x
⇒ 4a  =  4
⇒  a  =  1
Given slope to the normal: m = 2
Required normal: y = mx - 2 am - am3
⇒ y  =  2x - 2 (1) (2)  -  (1) (2)3
⇒ y  =  2x - 12
⇒  2x  - y  - 12  =  0

 

24. Find the coordinates of the points on the parabola y2 = 2x, whose focal distance is 
Sol: Given Parabola: y2 = 2x
⇒ 4a  =  2
⇒ a   =  
let P (x1, y1) be any point on the parabola

y12 = 2x1    ..............   (1)
Given focal distance: 
⇒ x1  +  a  =  
⇒ x1 +  = 


⇒ x1  =  2
From (1): y12  =  4
⇒ y1  =     2
Required Points: (2, 2) and (2, -2)    
 

25. Find the equation of the parabola whose vertex is (3, -2) and focus is (3, 1).
Sol: Given; Vertex; A (3, -2)
Focus: S (3, 1)
AS  =  a  =    =  3
X- coordinates are equal in A and S
⇒ Axis is parallel to Y-axis

Required parabola: (x - α)2 = 4a (y - β)
⇒ (x - 3)2 = 4(3) (y + 2)
       =  x2 +  9  -  6x  =  12y  +  24
⇒ x2 -  6x  - 12y  -1 5 = 0    

 

26. (  , 2 ) is one extremity of a focal chord of the parabola y2 = 8x. Find the Coordinates of the other extremity
Sol: Given parabola: y2 = 8x
⇒ 4a = 8
⇒ a = 2
⇒ Focus = S( 2 , 0 )
Given extremity of a focal chord: P ( ,  2 )


    

⇒ - 4y12 + 64 = 24y1
⇒ y12 + 6y1 - 16  =  0
⇒ y12 + 8y1 -  2y1 - 16  =  0
⇒ y1(y1 +  8)  -  2 (y1 +  8)  =  0
⇒ (y- 2) (y1 + 8) = 0
⇒ y1 =  2 ;     y1  =  -8
   Other extremity: ( 8, -8 )

27.  A comet moves in parabolic orbit with sun as focus. When the comet is 2 × 107 km. From the Sun, the line from Sun to it makes an angle  with the axes of the orbit. Find how near the comet comes to the sun.
Sol: Let the equation of the parabolic orbit of the comet y2 = 4ax
Let the position of the comet: P


                                                       
SP is perpendicular to the axis of the parabola Also, SP is the semi latus rectum
⇒ 2a  =  2 × 107
⇒ a  =  107 km
A is the nearest point on the parabola form focus.
⇒ AS  =  a  =  107 km
  The nearest point on the parabola is 107 km from the Sun.

28. Prove that the point on the parabola y2 = 4ax (a > 0) nearest to the focus is the vertex.
Sol: Let P (at2, 2at ) be any point on the parabola y2 = 4ax, which is nearest to the focus
⇒ S (a , 0)

⇒  SP2 = a2 (t2 - 1)2  +  4a2t2  =  ƒ (t) (say)
⇒ ƒ' (t) = a2 2(t2 - 1) ( 2t ) + 4a2 ( 2t ) =   4a2t [t2 - 1  +  2]
 =   4a2t (t2  +  1)
For Maximum (or) minimum: ƒ'(t) = 0
⇒ 4a2t (t2 +  1)  =  0
⇒ t  =  0
Also ƒ'' (t) = 4a2 (3t2 + 1)
⇒ ƒ'' (t) = 4a2 > 0 [   t   =   0]
⇒ ƒ (t) has minimum value at t = 0

                                                                  
   P  =  (0, 0 )
  The point on the parabola y2 = 4ax, which is the nearest to the focus is its vertex.

29. Find the pole of the line 2x  +  3y  +  4  =  0  with respect to the parabola y2 = 8x.
Sol. Given parabola: y2 = 8x
polar of (x1, y1): yy1 = 4 (x + x1)
⇒ 4x - yy1 + 4x1  =  0 ......... (1)
Given Polar: 2x  +  3y  +  4  =  0 ......... (2)
Comparing (1) and (2)


30. Show that the lines 2x - y = 0 and 6x - 2y + 1 = 0 are conjugate lines w.r.t the parabola y2 = 2x.
Sol: Given parabola: y2 = 2x
⇒ 4a  =  2
⇒ a   =  
Given line: 2x - y = 0
l = 2 ; m = -1 ; n = 0


31. Find the value of k if the points ( 1 , 2 ) and ( k, -1 ) an conjugate w.r.t the parabola y2 = 8x.
Sol: Given parabola: y2 = 8x
Given conjugate points: (1, 2) and (k, -1)
By data condition: S12 = 0
⇒ y1y2 = 4 ( x1 + x2 )
⇒ 2(-1) =4 ( 1 + k )
⇒  -2 = 4 + 4k


32. Find the value of k, if the lines 2x + 3y + 4 = 0 and x + y + k = 0 are conjugate w.r.t the parabola y2 = 8x.
Sol: Given parabola: y2 = 8x
⇒ 4a  =  8
⇒ a   =  2
Given conjugate lines: 2x + 3y + 4 = 0
⇒ l1  =  2 ; m1 =  3 ; n1 =  4
and x  +  y  +  k  =  0
 ⇒ l2 =  1 ; m2 =  1 ; n2 =  k
By date condition: l1n2 + l2n1 = 2am1m2
 ⇒ 2(k)  +  1(4)  =  2 (2) (3) (1)
 ⇒ 2k  +  4  =  12
 ⇒ k  =  4.

Posted Date : 25-09-2021

గమనిక : ప్రతిభ.ఈనాడు.నెట్‌లో కనిపించే వ్యాపార ప్రకటనలు వివిధ దేశాల్లోని వ్యాపారులు, సంస్థల నుంచి వస్తాయి. మరి కొన్ని ప్రకటనలు పాఠకుల అభిరుచి మేరకు కృత్రిమ మేధస్సు సాంకేతికత సాయంతో ప్రదర్శితమవుతుంటాయి. ఆ ప్రకటనల్లోని ఉత్పత్తులను లేదా సేవలను పాఠకులు స్వయంగా విచారించుకొని, జాగ్రత్తగా పరిశీలించి కొనుక్కోవాలి లేదా వినియోగించుకోవాలి. వాటి నాణ్యత లేదా లోపాలతో ఈనాడు యాజమాన్యానికి ఎలాంటి సంబంధం లేదు. ఈ విషయంలో ఉత్తర ప్రత్యుత్తరాలకు, ఈ-మెయిల్స్ కి, ఇంకా ఇతర రూపాల్లో సమాచార మార్పిడికి తావు లేదు. ఫిర్యాదులు స్వీకరించడం కుదరదు. పాఠకులు గమనించి, సహకరించాలని మనవి.

Special Stories

More

విద్యా ఉద్యోగ సమాచారం

More
 

లేటెస్ట్ నోటిఫికేష‌న్స్‌